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Xtj = µ + αt + Etj·,

(t = 1, . . . , k; j = 1, . . . , nt), where µ and αt
are each constant p × 1 vectors, such that

k∑
t=1

ntαt = 0,

and Etj is a random p × 1 error vector. The
joint distribution of the p-variates of Etj does
not depend on j and the expected value of
each is 0. The common distribution is often
assumed to be multinormal∗, and the Etj ’s
are assumed mutually independent.

In multivariate analysis of variance∗
(MANOVA), the null hypothesis (of no dif-
ference among group means)

H0 : α1 = α2 = · · · = αk = 0 (1)

is tested against the class of alternative
hypotheses that at least one of the equalities
in (1) is violated.

For a general model with p > 1 and k > 2
and with the variance-covariance matrices
of the distributions of the Etj’s unknown,
James [1] proposed the test statistic

T2
υ =

k∑
t=1

(Xt − X)′Wt(Xt − X),

where

Xt = n−1
t

nt∑
j=1

Xtj,

St = (nt − 1)−1
nt∑

j=1

(Xtj − Xt)(Xtj − Xt)′,

Wt = (n−1
t St)−1, W =

k∑
t=1

Wt,

X = W−1
k∑

t=1

WtXt.

See related entries and James [1] for fur-
ther details.
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WELCH TESTS

In the one-way∗ layout to compare the means
of k normally distributed populatons, it may
not be valid in some cases to assume homoge-
neous variances. Hence the ANOVA∗F-test∗

is not applicable, and the Welch [19] test was
proposed to fill this void. An important special
case (k = 2) is the famous Behrens–Fisher∗
problem. This special case was solved by
Welch [18] several years earlier than the
general case. His solution for k = 2 was
refined and tabled by Aspin [1,2] and has
become known as the Aspin–Welch test
(AWT). Further tables were later provided
by Trickett et al. [17]. Competing solutons to
the Behrens–Fisher problem have been sug-
gested by Fisher [8], Lee and Gurland [11]
(denoted LG), Cochran [6], and Welch him-
self [18; 2, Appendix]. All these tests depend
on normality, and Yuen [21] and Tiku and
Singh [16] attempt more robust solutions.
Some competing procedures for general k are
due to Brown and Forsythe [5], James [9],
and Bishop and Dudewicz [3]. The Welch and
Brown-Forsythe tests have been extended by
Roth [13] to the case where the k popula-
tions have a natural ordering (e.g., different
dosages of the same drug) and a trend test∗

is desired to detect differences in the means
that are monotone as a function of this order-
ing.

Another (unrelated) Welch [20] test was
designed in mixed or random effects mod-
els to provide confidence intervals for vari-
ance components∗, whose estimators are
often distributed as linear combinations of
chi-squared variates. Basically, Welch pro-
vides correction terms to the confidence lim-
its obtained via the Satterthwaite [14,15]
approximation∗, which is based on a sin-
gle chi-squared variate. These corrections
were long among the most widely advo-
cated methods (see, e.g., Mendenhall [12, pp.
352–354]), with no perceived major draw-
backs except tedious computations. However,
Boardman’s [4] simulations showed that the
Welch corrections are actually detrimental
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to achieving the nominal confidence coeffi-
cients. Hence they have fallen justifiably into
disfavor and will not be discussed further.

We now explore the details and properties
of the Welch tests described in the first para-
graph, and we begin with the AWT. The test
statistic is

t′ = x1 − x2√
s2

1/n1 + s2
2/n2

, (1)

and Welch [18], for a slightly more general
problem, derives the percentage points of t′
as a power series in 1/fi = 1/(ni − 1) for i = 1,
2. The P fractile (0 < P < 1) of t′ is explicitly
given to order (1/fi)2 by

α
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∑
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]
, (2)

where α = �−1(P) and � is the standard nor-
mal CDF. Note that the constant term in (2)
reflects simply the normal approximation to
t′.

Welch also suggests a method that refers
to ordinary t-tables. This is done by equating
the first two moments of t′ to those of a t-
distribution∗ with f degrees of freedom. The
solution for f is

1
f

= c2

f1
+ (1 − c)2

f2
, (3)

where c = (s2
1/n1)/(s2

1/n1 + s2
2/n2). Welch [18]

originally suggested replacing fi in (3) by fi +
2, i = 1, 2, and blank, but he later repudiated
this suggestion [2, Appendix]. He showed that
critical values based on (3) agree with the
correct ones based on (2) to order (1/fi), but
they differ in the (1/fi)2 term.

The AWT is more powerful (i.e., has
lower critical values) to varying degrees,
and hence gives narrower confidence inter-
vals, in general, than the essentially
Bayesian∗ Behrens–Fisher solution, the
Cochran method, or the Welch test based

on (3); the latter two are widely used due to
the computational simplicity of referring to
ordinary t-tables, (3) being far more accurate.
This accuracy is evaluated from the tables of
LG [11], whose general method for this whole
class of size and power calculations revealed
that the AWT operates closest by far to the
nominal level from among a set of seven com-
peting tests. LG then proposed their own
test, which is almost identical to the AWT in
both size and power, and recommended it on
the grounds of greater simplicity. However,
it requires five constants that depend on the
sample sizes and the nominal level, which
are provided only for 5 � n1 � n2 � 10 at the
0.05 level.

The Welch [19] test for general k compares
the statistic

W∗ =
∑

wj(xj − µ̂)2/(k − 1)
1 + [2(k − 2)/(k2 − 1)]

∑
hj

, (4)

to the F(k − 1, f ) distribution, where

wj = nj/s2
j , µ̂ =

∑
wjxj/W, W =

∑
wj,

hj = (1 − wj/W)2/(nj − 1),

f = (k2 − 1)/(3
∑

hj).

It and the Brown–Forsythe [5] test both
reduce to the Welch test based on (3)
when k = 2. The derivation of W∗, like that
of the AWT, stems from a power series
in (1/fi). Welch shows that W∗ agrees to
order 1/fi, but not to order (1/fi)2, with
the James [9] test, which is based on a
chi-squared (not F) approximation. Brown
and Forsythe [5] demonstrate via simula-
tions that, in general, their procedure and
W∗ both outperform the James test; further-
more, W∗ tends to be better than their pro-
cedure when extreme means are associated
with small variances, and vice versa. Impor-
tantly, both procedures lose little power in
the equal variance case relative to the ‘‘opti-
mal’’ ANOVA F-test, which is hence NOT
recommended for the one-way layout. Dyk-
stra and Werter [7] refine the James test
and claim from their simulations that this
refinement is on balance superior to the
other tests; however, their numerical tables
seem to support this conclusion only mildly
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when k = 6 and not at all when k = 4. In
any case, the Welch test is quite compet-
itive. Incidentally, Johansen [10] rederives
the Welch test as a special case of a more
general result on residuals∗ from a weighted
linear regression∗.

Roth’s [13] extension of W∗ to the Welch
trend test (WT) for ordered populations is
basically obtained by first amalgamating the
population means using isotonic regression∗
for simple order with weights wj = nj/s2

j .
Conditionally on the results of the amal-
gamation process, the statistic W∗ (when
applied to the amalgamated populations) is
multiplied by an appropriate constant so
that its conditional distribution is similar
to that of E

2
, which is the trend analog

of the ANOVA F-test. Roth also developed
the Brown–Forsythe trend test (BFT), and
his simulations showed that WT is generally
(but by no means uniformly) the better of
the two, tending to have larger type I error
rates but compensating for this with gains in
power too great to be explained merely by the
differences in level. Conditions under which
WT is superior to BFT (and vice versa) are
analogous to the above-mentioned findings of
Brown and Forsythe in the nontrend situa-
tion. Analogously as well, the E

2
-test does not

seem to gain much power (and hence is not
recommended) even when the variances are
equal, unless the sample sizes are as small
as 2 or 3.
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Editorial Note

In more recent papers, Aucamp (1986) (J.
Statist. Comp. Simul., 24, 33–46) proposes
the critical region

|t′| > z1−α/2[1 + 2Ĉ2f −1
1 + 2(1 − Ĉ)2f −1

2 ]1/2,

with �(z1−α/2) = 1 − α/2 and

Ĉ = s2
1

n1

[
s2

1

n1
+ s2

2

n2

]−1

,



9130 WELDON, WALTER FRANK RAPHAEL

and Matuszewski and Sotres (1986) (Comp.
Statist. Data Anal., 3, 241–249) propose
rejection of the null hypothesis if the 80%
confidence intervals for the two individual
means do not overlap—giving a significance
level of approximately 5%.

See also BEHRENS–FISHER PROBLEM; ISOTONIC INFERENCE;
TREND; and TREND TESTS.
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WELDON, WALTER FRANK RAPHAEL

Born: Highgate, London, England, March
15, 1860.

Died: Oxford, England, April 13, 1906.
Contributed to: Biometrics, evolutionary

biology, zoology.

W. F. R. Weldon was the second child of the
journalist and industrial chemist Walter Wel-
don and his wife Anne Cotton. His father
changed residences so frequently that Wel-
don’s early education was desultory until he
became a boarder in 1873 at Caversham near
Reading. Weldon matriculated at University
College London (UCL) in the autumn of 1876
with the intention of pursuing a medical
career. During his time at UCL, he acquired a
respectable knowledge of mathematics from
the Danish mathematician Olaus Henrici,
and attended the lectures of the zoologist
E. Ray Lankester. In the following year he
transferred to Kings College, London, and
in April 1878 he entered St. John’s College,
Cambridge, as a bye-term student.

Once at Cambridge, he met the zoologist
Francis Maitland Balfour, and subsequently
gave up his medical studies for zoology. In
1881, he gained a first-class degree in the
Natural Science Tripos; in the autumn he
left for the Naples Zoological Station to begin
the first of his studies in marine biological
organisms.

Upon returning to Cambridge in 1882,
Weldon was appointed university lecturer
in invertebrate morphology. In the following
year he married Florence Tebb. He became
a founding member of the Marine Biologi-
cal Station in Plymouth in 1884 and resided
there until 1887.

From 1887 until his death in 1906, Wel-
don’s work was centered around the devel-
opment of a fuller understanding of marine
biological phenomena and, in particular, the
examination of the relationship between vari-
ous organs of crabs and shrimps, to determine
selective death rates in relation to the laws
of growth. During his first five years at the
Marine Biological Station, Weldon’s investi-
gations were directed to the study of classi-
fication, morphology, and the development of
decapod crustacea. His only work on inverte-
brate morphology contained an account of the
early stage of segmentation and the building
of the layers of shrimp. Weldon was both
a master of histological techniques and a
powerful and accurate draftsman. In 1889
he succeeded E. Ray Lankester in the Jod-
drell Chair of Zoology at University College
London.

During this time Weldon read Francis
Galton’s Natural Inheritance. In this book
Galton∗ had shown that the frequency distri-
butions of the average size of certain organs
in man, plants, and moths were normally
distributed. Similar investigations had been
pursued by the Belgian statistician, Adolphe
Quetelet∗, whose work was confined to ‘‘civi-
lized man.’’ Weldon was interested in investi-
gating those variations in organs in a species
living in a wild state, acted upon by natural
selection and other destructive influences.

Writing on heredity in 1889, Galton had
predicted that selection would not change
the shape of the normal distribution∗; he
expected that his frequency distributions
would remain normally distributed in all
cases, whether or not animals were under
the action of natural selection. Around this
time, Weldon began to study the variation
of four organs in the common shrimp (Cran-
gon vulgaris), and he collected five samples
from waters fairly distant from Plymouth.
His statistical analysis, published in 1890,
confirmed Galton’s prediction. Shortly after
the paper was published, Weldon was elected
a Fellow of the Royal Society.

During the Easter vacation of 1892, Wel-
don and his wife collected 23 measurements
from 1000 adult female shore crabs (Carcinus
mœnas) from Malta and the Bay of Naples.
Weldon discovered that all but one of the
23 characters he measured in the Naples


